Setting positive end-expiratory pressure during jet ventilation to replicate the mean airway pressure of oscillatory ventilation.
نویسندگان
چکیده
BACKGROUND High-frequency ventilation can be delivered with either oscillatory ventilation (HFOV) or jet ventilation (HFJV). Traditional clinician biases may limit the range of function of these important ventilation modes. We hypothesized that (1) the jet ventilator can be an accurate monitor of mean airway pressure (P (aw)) during HFOV, and (2) a mathematical relationship can be used to determine the positive end-expiratory pressure (PEEP) setting required for HFJV to reproduce the P (aw) of HFOV. METHODS In phase 1 of our experiment, we used a differential pressure pneumotachometer and a jet adapter in-line between an oscillator circuit and a pediatric lung model to measure P (aw), PEEP, and peak inspiratory pressure (PIP). Thirty-six HFOV setting combinations were studied, in random order. We analyzed the correlation between the pneumotachometer and HFJV measurements. In phase 2 we used the jet as the monitoring device during each of the same 36 combinations of HFOV settings, and recorded P (aw), PIP, and DeltaP. Then, for each combination of settings, the jet ventilator was placed in-line with a conventional ventilator and was set at the same rate and PIP as was monitored during HFOV. To determine the appropriate PEEP setting, we calculated the P (aw) contributed by the PIP, respiratory rate, and inspiratory time set for HFJV, and subtracted this from the goal P (aw). This value was the PEEP predicted for HFJV to match the HFOV P (aw). RESULTS The correlation coefficient between the pneumotachometer and HFJV measurements was r = 0.99 (mean difference 0.62 +/- 0.30 cm H(2)O, p < 0.001). The predicted and actual PEEP required were highly correlated (r = 0.99, p < 0.001). The mean difference in these values is not statistically significantly different from zero (mean difference 0.25 +/- 1.02 cm H(2)O, p > 0.15). CONCLUSIONS HFJV is an accurate monitor during HFOV. These measurements can be used to calculate the predicted PEEP necessary to match P (aw) on the 2 ventilators. Replicating the P (aw) with adequate PEEP on HFJV may help simplify transitioning between ventilators when clinically indicated.
منابع مشابه
Role of continuous positive airway pressure to the non-ventilated lung during one-lung ventilation with low tidal volumes
INTRODUCTION In multiple study populations large tidal volumes (8 - 12 ml/kg) have deleterious effects on lung function in multiple study populations. The accepted approach to hypoxemia during one-lung ventilation is the application of continuous positive airway pressure to the non-ventilated lung first, followed by application of positive end-expiratory pressure to the ventilated lung. To our ...
متن کاملWhat changes can be expected during high frequency jet ventilation when the rate of ventilation, the I:E ratio and the driving pressure are modified? A laboratory study.
Changes in minute ventilation, tracheal airway pressure and lung volume have been measured using a jet ventilator (VS 600) during different rates of ventilation, I:E ratios and driving pressures. A lung model with a slightly increased compliance and an increased airway resistance was used. Five rates of ventilation (from 60 to 230 b.p.m.), three I:E ratios (0.25, 0.43, 0.67) and three driving p...
متن کاملEffectiveness of Nasal Intermittent Positive Pressure Ventilation versus Nasal Continuous Positive Airway Pressure in Preterm Infants after Less Invasive Surfactant Administration
Background Non-invasive ventilation is increased used in preterm infants. We aimed to compare the effectiveness of nasal intermittent positive pressure ventilation (nIPPV) versus nasal continuous positive airway pressure (nCPAP) in preterm infants with respiratory distress syndrome (RDS) after less invasive surfactant administration (LISA). Materials and Methods In this clinical trial, eighty ...
متن کاملRespiratory controversies in the critical care setting. Does airway pressure release ventilation offer important new advantages in mechanical ventilator support?
Airway pressure-release ventilation (APRV) is a mechanical ventilation strategy that is usually time-triggered but can be patient-triggered, pressure-limited, and time-cycled. APRV provides 2 levels of airway pressure (P(high) and P(low)) during 2 time periods (T(high) and T(low)), both set by the clinician. APRV usually involves a long T(high) and a short T(low). APRV uses an active exhalation...
متن کاملUtilization of the Lower Inflection Point of the Pressure-Volume Curve Results In Protective Conventional Ventilation Comparable to High Frequency Oscillatory Ventilation in an Animal Model of Acute Respiratory Distress Syndrome
INTRODUCTION Studies comparing high frequency oscillatory and conventional ventilation in acute respiratory distress syndrome have used low values of positive end-expiratory pressure and identified a need for better recruitment and pulmonary stability with high frequency. OBJECTIVE To compare conventional and high frequency ventilation using the lower inflection point of the pressure-volume c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Respiratory care
دوره 52 1 شماره
صفحات -
تاریخ انتشار 2007